Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440
نویسندگان
چکیده
The development of efficient recovery processes is essential to reduce the cost of polyhydroxyalkanoates (PHAs) production. In this work, a programmed self-disruptive Pseudomonas putida BXHL strain, derived from the prototype medium-chain-length PHA producer bacterium P. putida KT2440, was constructed as a proof of concept for exploring the possibility to control and facilitate the release of PHA granules to the extracellular medium. The new autolytic cell disruption system is based on two simultaneous strategies: the coordinated action of two proteins from the pneumococcal bacteriophage EJ-1, an endolysin (Ejl) and a holin (Ejh), and the mutation of the tolB gene, which exhibits alterations in outer membrane integrity that induce lysis hypersensitivity. The ejl and ejh coding genes were expressed under a XylS/Pm monocopy expression system inserted into the chromosome of the tolB mutant strain, in the presence of 3-methylbenzoate as inducer molecule. Our results demonstrate that the intracellular presence of PHA granules confers resistance to cell envelope. Conditions to control the cell autolysis in P. putida BXHL in terms of optimal fermentation, PHA content and PHA recovery have been set up by exploring the sensitivity to detergents, chelating agents and wet biomass solubility in organic solvents such as ethyl acetate.
منابع مشابه
Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440
BACKGROUND Rhamnolipids are potent biosurfactants with high potential for industrial applications. However, rhamnolipids are currently produced with the opportunistic pathogen Pseudomonas aeruginosa during growth on hydrophobic substrates such as plant oils. The heterologous production of rhamnolipids entails two essential advantages: Disconnecting the rhamnolipid biosynthesis from the complex ...
متن کاملProduction of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida
BACKGROUND Pseudomnas putida is a natural producer of medium chain length polyhydroxyalkanoates (mcl-PHA), a polymeric precursor of bioplastics. A two-fold increase of mcl-PHA production via inactivation of the glucose dehydrogenase gene gcd, limiting the metabolic flux towards side products like gluconate was achieved before. Here, we investigated the overproduction of enzymes catalyzing limit...
متن کاملMonitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
Pseudomonas putida has a variety of potential uses in bioremediation and biosynthesis of biodegradable plastics. P. putida is able to utilize a wide range of carbon sources. In this study, P. putida KT2440 was grown on glucose, glycerol, citrate, or fatty acid (lauric acid) as the sole carbon source. Differences in expression levels of genes involved in the Entner-Doudoroff pathway, glycerol me...
متن کاملGenome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system
BACKGROUND The soil bacterium Pseudomonas putida KT2440 is a "generally recognized as safe"-certified strain with robust property and versatile metabolism. Thus, it is an ideal candidate for synthetic biology, biodegradation, and other biotechnology applications. The known genome editing approaches of Pseudomonas are suboptimal; thus, it is necessary to develop a high efficiency genome editing ...
متن کاملConstruction and characterization of nitrate and nitrite respiring Pseudomonas putida KT2440 strains for anoxic biotechnical applications.
Pseudomonas putida KT2440 is frequently used in biotechnical research and applications due to its metabolic versatility and organic solvent resistance. A major drawback for a broad application is the inability of the bacterium to survive and grow under anoxic conditions, which prohibits the production of oxygen-sensitive proteins and metabolites. To develop a P. putida strain, which is able to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2011